Multi-level Gevrey solutions of singularly perturbed linear partial differential equations
نویسندگان
چکیده
We study the asymptotic behavior of the solutions related to a family of singularly perturbed linear partial differential equations in the complex domain. The analytic solutions obtained by means of a BorelLaplace summation procedure are represented by a formal power series in the perturbation parameter. Indeed, the geometry of the problem gives rise to a decomposition of the formal and analytic solutions so that a multi-level Gevrey order phenomenon appears. This result leans on a Malgrange-Sibuya theorem in several Gevrey levels.
منابع مشابه
Strongly regular multi-level solutions of singularly perturbed linear partial differential equations
We study the asymptotic behavior of the solutions related to a family of singularly perturbed partial differential equations in the complex domain. The analytic solutions are asymptotically represented by a formal power series in the perturbation parameter. The geometry of the problem and the nature of the elements involved in it give rise to different asymptotic levels related to the so-called...
متن کاملTWOFOLD q-GEVREY ASYMPTOTICS FOR LINEAR SINGULARLY PERTURBED q-DIFFERENCE-DIFFERENTIAL EQUATIONS WITH POLYNOMIAL COEFFICIENTS
We construct analytic and formal solutions for a family of q-difference-differential problems, under the action of a perturbation parameter. This work is a continuation of the study [10] focusing on a singularly perturbed q-difference-differential problem for which a phenomenon of multilevel q-Gevrey asymptotics has been observed, owing to the fact that the main equation is factorized as a prod...
متن کاملOn multiscale Gevrey and q−Gevrey asymptotics for some linear q−difference differential initial value Cauchy problems
We study the asymptotic behavior of the solutions related to a singularly perturbed q-differencedifferential problem in the complex domain. The analytic solution can be splitted according to the nature of the equation and its geometry so that both, Gevrey and q−Gevrey asymptotic phenomena are observed and can be distinguished, relating the analytic and the formal solution. The proof leans on a ...
متن کاملNumerical method for singularly perturbed fourth order ordinary differential equations of convection-diffusion type
In this paper, we have proposed a numerical method for singularly perturbed fourth order ordinary differential equations of convection-diffusion type. The numerical method combines boundary value technique, asymptotic expansion approximation, shooting method and finite difference method. In order to get a numerical solution for the derivative of the solution, the given interval is divided in...
متن کاملGevrey order of formal power series solutions of inhomogeneous partial differential equations with constant coefficients
In an earlier paper, the first author showed that certain normalized formal solutions of homogeneous linear partial differential equations with constant coefficients are multisummable, with a multisummability type that can be determined from a Newton polygon associated with the PDE. In this article, some of the results obtained there are extended in several directions: First of all, arbitrary f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014